

M. Sc. (Statistics) (Sem. II) (CBCS) Examination April / May - 2018

MS - 202 : Planning & Analysis of Industrial Experiments

Faculty Code: 003
Subject Code: 1172002

Subject Code: 1172002			
Γim	e : 2	$\frac{1}{2}$ Hours] [Total Marks:	70
Instructions: (1) Attempt all questions. (2) Each question carries equal marks.			
1	Ansv	wer the following questions : (Any Seven)	14
	(1)	C matrix is matrix.	
	(2)	Write parameters and parametric relation of BIBD.	
	(3)	Define non-binary Design.	
	(4)	RBD is block design.	
	(5)	Explain parameters of PBIBD and write parametric	
		relation of PBIBD.	
	(6)	Write Properties of Block design.	
	(7)	Define Orthogonal Balanced Design.	
	(8)	Difference between Basic Design and factorial Design.	
	(9)	Define Binary Design.	
	(10)	A design is said to be balanced design if C-matrix is	
		written as	
2	Ansv	wer the following questions : (Any Two)	14
	(1)	Write parameters of PBIBD and prove $\sum_{i=1}^{m} ni = V - 1$.	
	(2)	Obtain following BIBD using Galois field	
		$v = b = 7, r = k = 3, \lambda = 1.$	
	(3)	Explain Bose Inequality.	

- 3 Answer the following questions: 14 Explain partially balanced incomplete block design. Prove that for any symmetrical BIBD $(r-\lambda)$ must be a perfect square for even v. OR 3 Answer the following questions: 14 For any BIBD show that efficiency factor E < 1. Prove it. (2)Explain Ghosh and Biswas method. 4 Answer the following questions: (Any **Two**) 14 (1)Define:
- (i) Resolvable BIBD
 - (ii) Affine Resolvable BIBD
 - (iii) α Affine resolvable BIBD with an example.
 - Explain Balanced Incomplete block design. (2)
 - (3) Using Hadamard matrix Construction of BIBD.
- $\mathbf{5}$ Answer the following questions: (Any Two) 14
 - Explain 2³ factorial experiment.
 - (2) Prove that : $\lambda(v-1) = r(k-1)$.
 - Define confounding, and explain three types of (3)confounding.
 - Prove that : $-\sum_{i=1}^{m} ni \lambda i = r(k-1)$.